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1. INTRODUCTION

We start with the ideal MHD equations, assuming small perturbations for each physical parameter,

and combining the equations to get a differential equation containing the parameter to be solved.

Then by utilizing the boundary conditions inside and outside of the cylindrical flux tube, the solution

to the differential equation can be obtained.

In the following sections, we will treat the problem in cylindrical coordinate (the three base vectors

are er, eθ and ez). We assume the radius of the cylinder as r = a, and the two typical speeds

used during the derivation are local sound speed cs,i and local Alfvén speed vA,i. The index i = o, e

represents parameters in the interior and exterior regions, respectively.

2. BASIC MHD EQUATIONS

The initial equations are ideal MHD equations (ignoring collisions and viscosity):

∂ρ

∂t
+∇ · (ρv) = 0 (1)

ρ
∂v

∂t
+ v · ∇v +∇p+ ρg +

1

µ0

[(∇×B)×B] = 0 (2)

∇× (v ×B)− ∂B

∂t
= 0 (3)
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3. THE INTRODUCTION OF SMALL PERTURBATIONS

Assume a small perturbation in the parameters:

ρ = ρ0 + ρ1, p = p0 + p1, v = v1, B = B0 +B1,

We treat the perturbations as local phenomena, and neglect the large-scale gradients of macroscopic

parameters: ρg = 0, ∇ρ0 = 0, ∇p0 = 0, and ∇×B0 = 0. The magnetic field B only has z-component:

B = (0, 0, B).

By introducing these small perturbations, the aforementioned equations (1)-(3) are written as:

∂ρ1
∂t

+ ρ0∇ · v1 = 0 (4)

ρ0
∂v1

∂t
+∇[p1 +

1

µ0

∇(B0 ·B1)]−
1

µ0

(B0 · ∇)B1 = 0 (5)

∂B1

∂t
+B0(∇ · v1)− (B0 · ∇)v1 = 0 (6)

In Eq. (5), we can write pT = p1 +
1
µ0
∇(B0 ·B1) as the total pressure perturbation (gas pressure

plus magnetic pressure perturbations).

The above procedure converts Eq. (2) to Eq. (5) which is expressed by the total pressure pertur-

bation pT , meanwhile, we can also change Eq. (2) to make it contain the density perturbation ρ1:

ρ0
∂v1

∂t
+ c2s∇ρ1 +

1

µ0

[∇(B0 ·B1)− (B0 · ∇)B1] = 0 (7)

4. FURTHER DERIVATIONS
∂

∂t
(5) gives

ρ0
∂2v1

∂t2
+∇ · (∂pT

∂t
)− 1

µ0

(B0 ·
∂2B1

∂z∂t
) = 0 (8)

Combine Eq. (6) and Eq. (8) and know that local Alfvén speed vA = B√
µ0ρ

:

∂2v1

∂t2
+

∇
ρ0

· ∂pT
∂t

− v2A(
∂2v1

∂z2
− ez∇ · v1) = 0 (9)
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Take the divergence of the z-component of Eq. (8) (the last two terms in Eq. (8) will cancel):

∂2

∂t2
(∇ · v1) +

1

ρ0
∇2(

∂pT
∂t

) = 0 (10)

From the r-component of Eq. (9) we get:

ρ0
∂2vr
∂t2

− ρ0v
2
A

∂2vr
∂z2

+
∂2

∂r2
∂pT
∂t

= 0 (11)

∂

∂t
(7) gives

∂2v1

∂t2
= c2s∇(∇ · v1) + v2A[−∇(

∂vz
∂z

−∇v1) +
∂

∂z
(
∂v1

∂z
− ez∇ · v1)] (12)

Set ∆ = ∇ · v1 and Γ = ∂vz
∂z

, the z-component and divergence of Eq. (7) give:

∂2vz
∂t2

= c2s
∂∆

∂z
(13)

∂2∆

∂t2
= (c2s + v2A)∇2∆− v2A∇2Γ = 0 (14)

Suppose both pT and ∆ have the form of R(r)exp(iωt+ inθ + ikz):

pT = −iρ0ω

k2
∆+ C (15)

C is a constant.

Eqs. (13) and (14) can be combined to be:

∂4∆

∂t4
− (c2s + v2A)

∂2

∂t2
∇2∆+ c2sv

2
A = 0 (16)

Take the form ∆ = R(r)exp(iωt+ inθ + ikz) into Eq. (16):

d2R(r)

dr2
+

1

r

dR(r)

dr
− [

n2

r2
+ k2 − ω4

(c2s + v2A)ω
2 − k2c2sv

2
A

]R(r) = 0 (17)

Set m2 = k2 − ω4

(c2s + v2A)ω
2 − k2c2sv

2
A

=
(k2c2s − ω2)(k2v2A − ω2)

(c2s + v2A)(k
2c2T − ω2)

,

and cT =
csvA√
c2s + v2A

is the so-called tube speed.
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5. DISPERSION RELATION OF COMPRESSIBLE WAVES

Eq. (17) is a modified Bessel equation, and its solution is modified Bessel functions.

5.1. Bessel Equation

Bessel equation is expressed in Cartesian coordinate as d2y(x)

dx2
+

1

x

dy(x)

dx
+ (1 − ν2

x2
)y(x) = 0, by

substituting x = mr, y(x) = R(r), we have Bessel equation in cylindrical coordinate: 1

r

d

dr
(r
dR(r)

dr
)+

(m2 − n2

r2
)R(r) = 0.

5.2. Modified Bessel Equation

If we let x = ix in Bessel equation, we than get the modified Bessel equation: d2y(x)

dx2
+

1

x

dy(x)

dx
−

(1 +
ν2

x2
)y(x) = 0.

The solution of modified Bessel equation is y = AIν(x) + BKν(x). Iν(x) is the modified Bessel

function of the first kind; when ν > 0, Iν(0) = 0. Kν(x) is the modified Bessel function of the second

kind; Kν(0) → ∞.

5.3. Solution of the Differential Equation

The solution of Eq. (17) is R(r) = AIn(mr) +BKn(mr) (the radius of the cylinder is a).

Inside the cylinder, because when r = 0, R(r) must be finite, B = 0 ⇒ R(r) = AIn(mr) (r ≤ a);

outside the cylinder, In(mr) is exponentially decreasing, so we take R(r) = BKn(mr) (r > a).

Now we review Eqs. (11) and (15):

ρ0
∂2vr
∂t2

− ρ0v
2
A

∂2vr
∂z2

+
∂

∂r

∂pT
∂t

= 0 (11)

pT = −iρ0ω

k2
∆+ C (15)

If we rewrite vr in the form of v(r)exp(iωt+ inθ + ikz), then from Eq. (10) we have:

vr =
mω2

k2(ω2 − k2v2A)

dR(r)

dr
(18)

Now we already have the solution of ∆ = ∇ · v1, and we know the total pressure perturbation pT

and radial velocity perturbation vr are both related with ∆ (Eqs. (15) and (18), respectively).
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The boundary conditions are: radial velocity perturbation vr and total pressure pT are continuous.

Hence, we have

vr,o(r = a−) = vr,e(r = a+) ⇒ moI
′
n(moa)

ω2 − k2v2A,o

=
meK

′
n(mea)

ω2 − k2v2A,e

(19)

pT,o(r = a−) = pT,e(r = a+) ⇒ ρoIn(moa) = ρeKn(mea) (20)

Eq. (19)/ Eq. (20) gives the dispersion relation for compressible MHD waves:

ρe(ω
2 − k2v2A,e)mo

I ′n(moa)

In(moa)
= ρo(ω

2 − k2v2A,o)me
K ′

n(mea)

Kn(mea)
(21)

Note here m2
i =

(k2c2s − ω2)(k2v2A − ω2)

(c2s + v2A)(k
2c2T − ω2)

.

n is an integer, the azimuthal modal structures of waves are determined by n in the dispersion

relation.

• n = 0: sausage modes

• n = 1: kink modes

• n > 1(n is integer): flute or balloning modes

6. DISPERSION RELATION FOR INCOMPRESSIBLE SITUATIONS

The above derivations are based on the fact that the plasma is compressible, which means we have

pT ̸= 0. If pT = 0, meaning that the plasma is incompressible (the compressibility term ∇ · v1 = 0),

then Eq. (8) is reduced to

ρ0
∂2v1

∂t2
− 1

µ0

(B0 ·
∂2B1

∂z∂t
) = 0 (22)

And Eq. (6) is reduced to

∂B1

∂t
− (B0 · ∇)v1 =

∂B1

∂t
−B0 ·

∂v1

∂z
= 0 (23)

Substitute Eq. (23) into Eq. (22):

∂2v1

∂t2
=

B2
0

µ0ρ0

∂2v1

∂z2
(24)
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Take the form v1 = v1(r)exp(iωt+ inθ + ikz) into Eq. (24):

ω2 = v2Ak
2 (25)

Eq. (25) describes a pure Alfvén wave propagating along the field lines, which is the torsional Alfvén

wave in flux tubes.

7. CONCLUSION

In conclusion, we have two forms of dispersion relation:

• For incompressible situation:

ω2 = v2Ak
2

• For compressible situations:

ρe(ω
2 − k2v2A,e)mo

I ′n(moa)

In(moa)
= ρo(ω

2 − k2v2A,o)me
K ′

n(mea)

Kn(mea)

(I ′n(mor) and K ′
n(mer) are the derivatives of In and Kn, i.e., I ′n =

dIn(mor)

dr
)
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